Grouping and dimensionality reduction by locally linear embedding
نویسندگان
چکیده
Locally Linear Embedding (LLE) is an elegant nonlinear dimensionality-reduction technique recently introduced by Roweis and Saul [2]. It fails when the data is divided into separate groups. We study a variant of LLE that can simultaneously group the data and calculate local embedding of each group. An estimate for the upper bound on the intrinsic dimension of the data set is obtained automatically.
منابع مشابه
Clustering on High Dimensional data Using Locally Linear Embedding (LLE) Techniques
Clustering is the task of grouping a set of objects in such a way that objects in the same group (called cluster) are more similar (in some sense or another) to each other than to those in other groups (clusters). The dimension can be reduced by using some techniques of dimension reduction. Recently new non linear methods introduced for reducing the dimensionality of such data called Locally Li...
متن کاملLocally Linear Embedded Eigenspace Analysis
The existing nonlinear local methods for dimensionality reduction yield impressive results in data embedding and manifold visualization. However, they also open up the problem of how to define a unified projection from new data to the embedded subspace constructed by the training samples. Thinking globally and fitting locally, we present a new linear embedding approach, called Locally Embedded ...
متن کاملGrowing Locally Linear Embedding for Manifold Learning
Locally linear embedding is an effective nonlinear dimensionality reduction method for exploring the intrinsic characteristics of high dimensional data. This paper proposes a new manifold learning method, which is based on locally linear embedding and growing neural gas and is termed growing locally linear embedding (GLLE). GLLE overcomes the major limitations of the original locally linear emb...
متن کاملGraph Embedding and Dimensionality Reduction - A Survey
Dimension reduction is defined as the process of mapping high-dimensional data to a lowerdimensional vector space. Most machine learning and data mining techniques may not be effective for high-dimensional data. In order to handle this data adequately, its dimensionality needs to be reduced. Dimensionality reduction is also needed for visualization, graph embedding, image retrieval and a variet...
متن کاملNonlinear dimensionality reduction by locally linear embedding.
Many areas of science depend on exploratory data analysis and visualization. The need to analyze large amounts of multivariate data raises the fundamental problem of dimensionality reduction: how to discover compact representations of high-dimensional data. Here, we introduce locally linear embedding (LLE), an unsupervised learning algorithm that computes low-dimensional, neighborhood-preservin...
متن کامل